Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary extracted from

  • Qiu, Y.; Zhao, Y.B.; Wang, Q.; Li, J.Y.; Zhou, Z.J.; Liao, C.H.; Ge, X.Y.
    Predicting the angiotensin converting enzyme 2 (ACE2) utilizing capability as the receptor of SARS-CoV-2 (2020), Microbes Infect., 22, 221-225.
    View publication on PubMedView publication on EuropePMC

Application

EC Number Application Comment Organism
3.4.17.23 medicine angiotensin converting enzyme 2 (ACE2) is the receptor of SARS-CoV-2, but only ACE2 of certain species can be utilized by SARS-CoV-2. SARS-CoV-2 tends to utilize ACE2 of various mammals, except murines, and some birds, such as pigeon. This prediction may help to screen the intermediate hosts of SARS-CoV-2. SARS-CoV-2 has a high genetic relationship with a bat coronavirus (BatCoV RaTG13) with a 96% genomic nucleotide sequence identity. The close phylogenetic relationship to Bat RaTG13 provides evidence for a bat origin of SARS-CoV-2. Direct transmission of the virus from bats to humans is unlikely due to the lack of direct contact between bats and humans (in Wuhan, China). There are probably intermediate hosts transmitting SARS-CoV-2 to humans. Combined phylogenetic analysis and critical site marking is used to predict the utilizing capability of ACE2 from different animal species by SARS-CoV-2. It is confirmed that pangolin (Manis javanica), cat (Felis catus), cow (Bos taurus), buffalo (Bubalus bubalis), goat (Capra hircus), sheep (Ovis aries) and pigeon (Columba livia) ACE2 might be utilized by SARS-CoV-2, indicating potential interspecies transmission of the virus from bats to these animals and among these animals Homo sapiens
3.4.17.23 medicine angiotensin converting enzyme 2 (ACE2) is the receptor of SARS-CoV-2, but only ACE2 of certain species can be utilized by SARS-CoV-2. SARS-CoV-2 tends to utilize ACE2 of various mammals, except murines, and some birds, such as pigeon. This prediction may help to screen the intermediate hosts of SARS-CoV-2. SARS-CoV-2 has a high genetic relationship with a bat coronavirus (BatCoV RaTG13) with a 96% genomic nucleotide sequence identity. The close phylogenetic relationship to Bat RaTG13 provides evidence for a bat origin of SARS-CoV-2. Direct transmission of the virus from bats to humans is unlikely due to the lack of direct contact between bats and humans (in Wuhan, China). There are probably intermediate hosts transmitting SARS-CoV-2 to humans. Combined phylogenetic analysis and critical site marking is used to predict the utilizing capability of ACE2 from different animal species by SARS-CoV-2. It is confirmed that pangolin (Manis javanica), cat (Felis catus), cow (Bos taurus), buffalo (Bubalus bubalis), goat (Capra hircus), sheep (Ovis aries) and pigeon (Columba livia) ACE2 might be utilized by SARS-CoV-2, indicating potential interspecies transmission of the virus from bats to these animals and among these animals Mus musculus
3.4.17.23 medicine angiotensin converting enzyme 2 (ACE2) is the receptor of SARS-CoV-2, but only ACE2 of certain species can be utilized by SARS-CoV-2. SARS-CoV-2 tends to utilize ACE2 of various mammals, except murines, and some birds, such as pigeon. This prediction may help to screen the intermediate hosts of SARS-CoV-2. SARS-CoV-2 has a high genetic relationship with a bat coronavirus (BatCoV RaTG13) with a 96% genomic nucleotide sequence identity. The close phylogenetic relationship to Bat RaTG13 provides evidence for a bat origin of SARS-CoV-2. Direct transmission of the virus from bats to humans is unlikely due to the lack of direct contact between bats and humans (in Wuhan, China). There are probably intermediate hosts transmitting SARS-CoV-2 to humans. Combined phylogenetic analysis and critical site marking is used to predict the utilizing capability of ACE2 from different animal species by SARS-CoV-2. It is confirmed that pangolin (Manis javanica), cat (Felis catus), cow (Bos taurus), buffalo (Bubalus bubalis), goat (Capra hircus), sheep (Ovis aries) and pigeon (Columba livia) ACE2 might be utilized by SARS-CoV-2, indicating potential interspecies transmission of the virus from bats to these animals and among these animals Rhinolophus sinicus
3.4.17.23 medicine angiotensin converting enzyme 2 (ACE2) is the receptor of SARS-CoV-2, but only ACE2 of certain species can be utilized by SARS-CoV-2. SARS-CoV-2 tends to utilize ACE2 of various mammals, except murines, and some birds, such as pigeon. This prediction may help to screen the intermediate hosts of SARS-CoV-2. SARS-CoV-2 has a high genetic relationship with a bat coronavirus (BatCoV RaTG13) with a 96% genomic nucleotide sequence identity. The close phylogenetic relationship to Bat RaTG13 provides evidence for a bat origin of SARS-CoV-2. Direct transmission of the virus from bats to humans is unlikely due to the lack of direct contact between bats and humans (in Wuhan, China). There are probably intermediate hosts transmitting SARS-CoV-2 to humans. Combined phylogenetic analysis and critical site marking is used to predict the utilizing capability of ACE2 from different animal species by SARS-CoV-2. It is confirmed that pangolin (Manis javanica), cat (Felis catus), cow (Bos taurus), buffalo (Bubalus bubalis), goat (Capra hircus), sheep (Ovis aries) and pigeon (Columba livia) ACE2 might be utilized by SARS-CoV-2, indicating potential interspecies transmission of the virus from bats to these animals and among these animals Paguma larvata
3.4.17.23 medicine angiotensin converting enzyme 2 (ACE2) is the receptor of SARS-CoV-2, but only ACE2 of certain species can be utilized by SARS-CoV-2. SARS-CoV-2 tends to utilize ACE2 of various mammals, except murines, and some birds, such as pigeon. This prediction may help to screen the intermediate hosts of SARS-CoV-2. SARS-CoV-2 has a high genetic relationship with a bat coronavirus (BatCoV RaTG13) with a 96% genomic nucleotide sequence identity. The close phylogenetic relationship to Bat RaTG13 provides evidence for a bat origin of SARS-CoV-2. Direct transmission of the virus from bats to humans is unlikely due to the lack of direct contact between bats and humans (in Wuhan, China). There are probably intermediate hosts transmitting SARS-CoV-2 to humans. Combined phylogenetic analysis and critical site marking is used to predict the utilizing capability of ACE2 from different animal species by SARS-CoV-2. It is confirmed that pangolin (Manis javanica), cat (Felis catus), cow (Bos taurus), buffalo (Bubalus bubalis), goat (Capra hircus), sheep (Ovis aries) and pigeon (Columba livia) ACE2 might be utilized by SARS-CoV-2, indicating potential interspecies transmission of the virus from bats to these animals and among these animals Sus scrofa
3.4.17.23 medicine angiotensin converting enzyme 2 (ACE2) is the receptor of SARS-CoV-2, but only ACE2 of certain species can be utilized by SARS-CoV-2. SARS-CoV-2 tends to utilize ACE2 of various mammals, except murines, and some birds, such as pigeon. This prediction may help to screen the intermediate hosts of SARS-CoV-2. SARS-CoV-2 has a high genetic relationship with a bat coronavirus (BatCoV RaTG13) with a 96% genomic nucleotide sequence identity. The close phylogenetic relationship to Bat RaTG13 provides evidence for a bat origin of SARS-CoV-2. Direct transmission of the virus from bats to humans is unlikely due to the lack of direct contact between bats and humans (in Wuhan, China). There are probably intermediate hosts transmitting SARS-CoV-2 to humans. Combined phylogenetic analysis and critical site marking is used to predict the utilizing capability of ACE2 from different animal species by SARS-CoV-2. It is confirmed that pangolin (Manis javanica), cat (Felis catus), cow (Bos taurus), buffalo (Bubalus bubalis), goat (Capra hircus), sheep (Ovis aries) and pigeon (Columba livia) ACE2 might be utilized by SARS-CoV-2, indicating potential interspecies transmission of the virus from bats to these animals and among these animals Manis javanica
3.4.17.23 medicine angiotensin converting enzyme 2 (ACE2) is the receptor of SARS-CoV-2, but only ACE2 of certain species can be utilized by SARS-CoV-2. SARS-CoV-2 tends to utilize ACE2 of various mammals, except murines, and some birds, such as pigeon. This prediction may help to screen the intermediate hosts of SARS-CoV-2. SARS-CoV-2 has a high genetic relationship with a bat coronavirus (BatCoV RaTG13) with a 96% genomic nucleotide sequence identity. The close phylogenetic relationship to Bat RaTG13 provides evidence for a bat origin of SARS-CoV-2. Direct transmission of the virus from bats to humans is unlikely due to the lack of direct contact between bats and humans (in Wuhan, China). There are probably intermediate hosts transmitting SARS-CoV-2 to humans. Combined phylogenetic analysis and critical site marking is used to predict the utilizing capability of ACE2 from different animal species by SARS-CoV-2. It is confirmed that pangolin (Manis javanica), cat (Felis catus), cow (Bos taurus), buffalo (Bubalus bubalis), goat (Capra hircus), sheep (Ovis aries) and pigeon (Columba livia) ACE2 might be utilized by SARS-CoV-2, indicating potential interspecies transmission of the virus from bats to these animals and among these animals Felis catus
3.4.17.23 medicine angiotensin converting enzyme 2 (ACE2) is the receptor of SARS-CoV-2, but only ACE2 of certain species can be utilized by SARS-CoV-2. SARS-CoV-2 tends to utilize ACE2 of various mammals, except murines, and some birds, such as pigeon. This prediction may help to screen the intermediate hosts of SARS-CoV-2. SARS-CoV-2 has a high genetic relationship with a bat coronavirus (BatCoV RaTG13) with a 96% genomic nucleotide sequence identity. The close phylogenetic relationship to Bat RaTG13 provides evidence for a bat origin of SARS-CoV-2. Direct transmission of the virus from bats to humans is unlikely due to the lack of direct contact between bats and humans (in Wuhan, China). There are probably intermediate hosts transmitting SARS-CoV-2 to humans. Combined phylogenetic analysis and critical site marking is used to predict the utilizing capability of ACE2 from different animal species by SARS-CoV-2. It is confirmed that pangolin (Manis javanica), cat (Felis catus), cow (Bos taurus), buffalo (Bubalus bubalis), goat (Capra hircus), sheep (Ovis aries) and pigeon (Columba livia) ACE2 might be utilized by SARS-CoV-2, indicating potential interspecies transmission of the virus from bats to these animals and among these animals Bos taurus
3.4.17.23 medicine angiotensin converting enzyme 2 (ACE2) is the receptor of SARS-CoV-2, but only ACE2 of certain species can be utilized by SARS-CoV-2. SARS-CoV-2 tends to utilize ACE2 of various mammals, except murines, and some birds, such as pigeon. This prediction may help to screen the intermediate hosts of SARS-CoV-2. SARS-CoV-2 has a high genetic relationship with a bat coronavirus (BatCoV RaTG13) with a 96% genomic nucleotide sequence identity. The close phylogenetic relationship to Bat RaTG13 provides evidence for a bat origin of SARS-CoV-2. Direct transmission of the virus from bats to humans is unlikely due to the lack of direct contact between bats and humans (in Wuhan, China). There are probably intermediate hosts transmitting SARS-CoV-2 to humans. Combined phylogenetic analysis and critical site marking is used to predict the utilizing capability of ACE2 from different animal species by SARS-CoV-2. It is confirmed that pangolin (Manis javanica), cat (Felis catus), cow (Bos taurus), buffalo (Bubalus bubalis), goat (Capra hircus), sheep (Ovis aries) and pigeon (Columba livia) ACE2 might be utilized by SARS-CoV-2, indicating potential interspecies transmission of the virus from bats to these animals and among these animals Bubalus bubalis
3.4.17.23 medicine angiotensin converting enzyme 2 (ACE2) is the receptor of SARS-CoV-2, but only ACE2 of certain species can be utilized by SARS-CoV-2. SARS-CoV-2 tends to utilize ACE2 of various mammals, except murines, and some birds, such as pigeon. This prediction may help to screen the intermediate hosts of SARS-CoV-2. SARS-CoV-2 has a high genetic relationship with a bat coronavirus (BatCoV RaTG13) with a 96% genomic nucleotide sequence identity. The close phylogenetic relationship to Bat RaTG13 provides evidence for a bat origin of SARS-CoV-2. Direct transmission of the virus from bats to humans is unlikely due to the lack of direct contact between bats and humans (in Wuhan, China). There are probably intermediate hosts transmitting SARS-CoV-2 to humans. Combined phylogenetic analysis and critical site marking is used to predict the utilizing capability of ACE2 from different animal species by SARS-CoV-2. It is confirmed that pangolin (Manis javanica), cat (Felis catus), cow (Bos taurus), buffalo (Bubalus bubalis), goat (Capra hircus), sheep (Ovis aries) and pigeon (Columba livia) ACE2 might be utilized by SARS-CoV-2, indicating potential interspecies transmission of the virus from bats to these animals and among these animals Capra hircus
3.4.17.23 medicine angiotensin converting enzyme 2 (ACE2) is the receptor of SARS-CoV-2, but only ACE2 of certain species can be utilized by SARS-CoV-2. SARS-CoV-2 tends to utilize ACE2 of various mammals, except murines, and some birds, such as pigeon. This prediction may help to screen the intermediate hosts of SARS-CoV-2. SARS-CoV-2 has a high genetic relationship with a bat coronavirus (BatCoV RaTG13) with a 96% genomic nucleotide sequence identity. The close phylogenetic relationship to Bat RaTG13 provides evidence for a bat origin of SARS-CoV-2. Direct transmission of the virus from bats to humans is unlikely due to the lack of direct contact between bats and humans (in Wuhan, China). There are probably intermediate hosts transmitting SARS-CoV-2 to humans. Combined phylogenetic analysis and critical site marking is used to predict the utilizing capability of ACE2 from different animal species by SARS-CoV-2. It is confirmed that pangolin (Manis javanica), cat (Felis catus), cow (Bos taurus), buffalo (Bubalus bubalis), goat (Capra hircus), sheep (Ovis aries) and pigeon (Columba livia) ACE2 might be utilized by SARS-CoV-2, indicating potential interspecies transmission of the virus from bats to these animals and among these animals Ovis aries
3.4.17.23 medicine angiotensin converting enzyme 2 (ACE2) is the receptor of SARS-CoV-2, but only ACE2 of certain species can be utilized by SARS-CoV-2. SARS-CoV-2 tends to utilize ACE2 of various mammals, except murines, and some birds, such as pigeon. This prediction may help to screen the intermediate hosts of SARS-CoV-2. SARS-CoV-2 has a high genetic relationship with a bat coronavirus (BatCoV RaTG13) with a 96% genomic nucleotide sequence identity. The close phylogenetic relationship to Bat RaTG13 provides evidence for a bat origin of SARS-CoV-2. Direct transmission of the virus from bats to humans is unlikely due to the lack of direct contact between bats and humans (in Wuhan, China). There are probably intermediate hosts transmitting SARS-CoV-2 to humans. Combined phylogenetic analysis and critical site marking is used to predict the utilizing capability of ACE2 from different animal species by SARS-CoV-2. It is confirmed that pangolin (Manis javanica), cat (Felis catus), cow (Bos taurus), buffalo (Bubalus bubalis), goat (Capra hircus), sheep (Ovis aries) and pigeon (Columba livia) ACE2 might be utilized by SARS-CoV-2, indicating potential interspecies transmission of the virus from bats to these animals and among these animals Columba livia

Organism

EC Number Organism UniProt Comment Textmining
3.4.17.23 Bos taurus XP_005228485.1
-
-
3.4.17.23 Bubalus bubalis XP_006041602.1
-
-
3.4.17.23 Capra hircus W6CG84
-
-
3.4.17.23 Columba livia A0A2I0MLI2
-
-
3.4.17.23 Felis catus Q56H28
-
-
3.4.17.23 Homo sapiens Q9BYF1
-
-
3.4.17.23 Manis javanica XP_017505752.1
-
-
3.4.17.23 Mus musculus Q8R0I0
-
-
3.4.17.23 Ovis aries XP_011961657.1
-
-
3.4.17.23 Paguma larvata Q56NL1
-
-
3.4.17.23 Rhinolophus sinicus U5WHY8
-
-
3.4.17.23 Sus scrofa K7GLM4
-
-

Source Tissue

EC Number Source Tissue Comment Organism Textmining
3.4.17.23 heart vascular endothelial cells Homo sapiens
-
3.4.17.23 kidney vascular endothelial cells Homo sapiens
-
3.4.17.23 vascular endothelial cell in the heart and the kidney Homo sapiens
-

Synonyms

EC Number Synonyms Comment Organism
3.4.17.23 ACE2
-
Homo sapiens
3.4.17.23 ACE2
-
Mus musculus
3.4.17.23 ACE2
-
Rhinolophus sinicus
3.4.17.23 ACE2
-
Paguma larvata
3.4.17.23 ACE2
-
Sus scrofa
3.4.17.23 ACE2
-
Manis javanica
3.4.17.23 ACE2
-
Felis catus
3.4.17.23 ACE2
-
Bos taurus
3.4.17.23 ACE2
-
Bubalus bubalis
3.4.17.23 ACE2
-
Capra hircus
3.4.17.23 ACE2
-
Ovis aries
3.4.17.23 ACE2
-
Columba livia

General Information

EC Number General Information Comment Organism
3.4.17.23 drug target angiotensin converting enzyme 2 (ACE2) is the receptor of SARS-CoV-2, but only ACE2 of certain species can be utilized by SARS-CoV-2. SARS-CoV-2 tends to utilize ACE2 of various mammals, except murines, and some birds, such as pigeon. This prediction may help to screen the intermediate hosts of SARS-CoV-2. SARS-CoV-2 has a high genetic relationship with a bat coronavirus (BatCoV RaTG13) with a 96% genomic nucleotide sequence identity. The close phylogenetic relationship to Bat RaTG13 provides evidence for a bat origin of SARS-CoV-2. Direct transmission of the virus from bats to humans is unlikely due to the lack of direct contact between bats and humans (in Wuhan, China). There are probably intermediate hosts transmitting SARS-CoV-2 to humans. Combined phylogenetic analysis and critical site marking is used to predict the utilizing capability of ACE2 from different animal species by SARS-CoV-2. It is confirmed that pangolin (Manis javanica), cat (Felis catus), cow (Bos taurus), buffalo (Bubalus bubalis), goat (Capra hircus), sheep (Ovis aries) and pigeon (Columba livia) ACE2 might be utilized by SARS-CoV-2, indicating potential interspecies transmission of the virus from bats to these animals and among these animals Homo sapiens
3.4.17.23 physiological function angiotensin converting enzyme 2 (ACE2) is the receptor of SARS-CoV-2, but only ACE2 of certain species can be utilized by SARS-CoV-2. SARS-CoV-2 tends to utilize ACE2 of various mammals, except murines, and some birds, such as pigeon. This prediction may help to screen the intermediate hosts of SARS-CoV-2. SARS-CoV-2 has a high genetic relationship with a bat coronavirus (BatCoV RaTG13) with a 96% genomic nucleotide sequence identity. The close phylogenetic relationship to Bat RaTG13 provides evidence for a bat origin of SARS-CoV-2. Direct transmission of the virus from bats to humans is unlikely due to the lack of direct contact between bats and humans (in Wuhan, China). There are probably intermediate hosts transmitting SARS-CoV-2 to humans. Combined phylogenetic analysis and critical site marking is used to predict the utilizing capability of ACE2 from different animal species by SARS-CoV-2. It is confirmed that pangolin (Manis javanica), cat (Felis catus), cow (Bos taurus), buffalo (Bubalus bubalis), goat (Capra hircus), sheep (Ovis aries) and pigeon (Columba livia) ACE2 might be utilized by SARS-CoV-2, indicating potential interspecies transmission of the virus from bats to these animals and among these animals Homo sapiens
3.4.17.23 physiological function angiotensin converting enzyme 2 (ACE2) is the receptor of SARS-CoV-2, but only ACE2 of certain species can be utilized by SARS-CoV-2. SARS-CoV-2 tends to utilize ACE2 of various mammals, except murines, and some birds, such as pigeon. This prediction may help to screen the intermediate hosts of SARS-CoV-2. SARS-CoV-2 has a high genetic relationship with a bat coronavirus (BatCoV RaTG13) with a 96% genomic nucleotide sequence identity. The close phylogenetic relationship to Bat RaTG13 provides evidence for a bat origin of SARS-CoV-2. Direct transmission of the virus from bats to humans is unlikely due to the lack of direct contact between bats and humans (in Wuhan, China). There are probably intermediate hosts transmitting SARS-CoV-2 to humans. Combined phylogenetic analysis and critical site marking is used to predict the utilizing capability of ACE2 from different animal species by SARS-CoV-2. It is confirmed that pangolin (Manis javanica), cat (Felis catus), cow (Bos taurus), buffalo (Bubalus bubalis), goat (Capra hircus), sheep (Ovis aries) and pigeon (Columba livia) ACE2 might be utilized by SARS-CoV-2, indicating potential interspecies transmission of the virus from bats to these animals and among these animals Mus musculus
3.4.17.23 physiological function angiotensin converting enzyme 2 (ACE2) is the receptor of SARS-CoV-2, but only ACE2 of certain species can be utilized by SARS-CoV-2. SARS-CoV-2 tends to utilize ACE2 of various mammals, except murines, and some birds, such as pigeon. This prediction may help to screen the intermediate hosts of SARS-CoV-2. SARS-CoV-2 has a high genetic relationship with a bat coronavirus (BatCoV RaTG13) with a 96% genomic nucleotide sequence identity. The close phylogenetic relationship to Bat RaTG13 provides evidence for a bat origin of SARS-CoV-2. Direct transmission of the virus from bats to humans is unlikely due to the lack of direct contact between bats and humans (in Wuhan, China). There are probably intermediate hosts transmitting SARS-CoV-2 to humans. Combined phylogenetic analysis and critical site marking is used to predict the utilizing capability of ACE2 from different animal species by SARS-CoV-2. It is confirmed that pangolin (Manis javanica), cat (Felis catus), cow (Bos taurus), buffalo (Bubalus bubalis), goat (Capra hircus), sheep (Ovis aries) and pigeon (Columba livia) ACE2 might be utilized by SARS-CoV-2, indicating potential interspecies transmission of the virus from bats to these animals and among these animals Rhinolophus sinicus
3.4.17.23 physiological function angiotensin converting enzyme 2 (ACE2) is the receptor of SARS-CoV-2, but only ACE2 of certain species can be utilized by SARS-CoV-2. SARS-CoV-2 tends to utilize ACE2 of various mammals, except murines, and some birds, such as pigeon. This prediction may help to screen the intermediate hosts of SARS-CoV-2. SARS-CoV-2 has a high genetic relationship with a bat coronavirus (BatCoV RaTG13) with a 96% genomic nucleotide sequence identity. The close phylogenetic relationship to Bat RaTG13 provides evidence for a bat origin of SARS-CoV-2. Direct transmission of the virus from bats to humans is unlikely due to the lack of direct contact between bats and humans (in Wuhan, China). There are probably intermediate hosts transmitting SARS-CoV-2 to humans. Combined phylogenetic analysis and critical site marking is used to predict the utilizing capability of ACE2 from different animal species by SARS-CoV-2. It is confirmed that pangolin (Manis javanica), cat (Felis catus), cow (Bos taurus), buffalo (Bubalus bubalis), goat (Capra hircus), sheep (Ovis aries) and pigeon (Columba livia) ACE2 might be utilized by SARS-CoV-2, indicating potential interspecies transmission of the virus from bats to these animals and among these animals Paguma larvata
3.4.17.23 physiological function angiotensin converting enzyme 2 (ACE2) is the receptor of SARS-CoV-2, but only ACE2 of certain species can be utilized by SARS-CoV-2. SARS-CoV-2 tends to utilize ACE2 of various mammals, except murines, and some birds, such as pigeon. This prediction may help to screen the intermediate hosts of SARS-CoV-2. SARS-CoV-2 has a high genetic relationship with a bat coronavirus (BatCoV RaTG13) with a 96% genomic nucleotide sequence identity. The close phylogenetic relationship to Bat RaTG13 provides evidence for a bat origin of SARS-CoV-2. Direct transmission of the virus from bats to humans is unlikely due to the lack of direct contact between bats and humans (in Wuhan, China). There are probably intermediate hosts transmitting SARS-CoV-2 to humans. Combined phylogenetic analysis and critical site marking is used to predict the utilizing capability of ACE2 from different animal species by SARS-CoV-2. It is confirmed that pangolin (Manis javanica), cat (Felis catus), cow (Bos taurus), buffalo (Bubalus bubalis), goat (Capra hircus), sheep (Ovis aries) and pigeon (Columba livia) ACE2 might be utilized by SARS-CoV-2, indicating potential interspecies transmission of the virus from bats to these animals and among these animals Manis javanica
3.4.17.23 physiological function angiotensin converting enzyme 2 (ACE2) is the receptor of SARS-CoV-2, but only ACE2 of certain species can be utilized by SARS-CoV-2. SARS-CoV-2 tends to utilize ACE2 of various mammals, except murines, and some birds, such as pigeon. This prediction may help to screen the intermediate hosts of SARS-CoV-2. SARS-CoV-2 has a high genetic relationship with a bat coronavirus (BatCoV RaTG13) with a 96% genomic nucleotide sequence identity. The close phylogenetic relationship to Bat RaTG13 provides evidence for a bat origin of SARS-CoV-2. Direct transmission of the virus from bats to humans is unlikely due to the lack of direct contact between bats and humans (in Wuhan, China). There are probably intermediate hosts transmitting SARS-CoV-2 to humans. Combined phylogenetic analysis and critical site marking is used to predict the utilizing capability of ACE2 from different animal species by SARS-CoV-2. It is confirmed that pangolin (Manis javanica), cat (Felis catus), cow (Bos taurus), buffalo (Bubalus bubalis), goat (Capra hircus), sheep (Ovis aries) and pigeon (Columba livia) ACE2 might be utilized by SARS-CoV-2, indicating potential interspecies transmission of the virus from bats to these animals and among these animals Felis catus
3.4.17.23 physiological function angiotensin converting enzyme 2 (ACE2) is the receptor of SARS-CoV-2, but only ACE2 of certain species can be utilized by SARS-CoV-2. SARS-CoV-2 tends to utilize ACE2 of various mammals, except murines, and some birds, such as pigeon. This prediction may help to screen the intermediate hosts of SARS-CoV-2. SARS-CoV-2 has a high genetic relationship with a bat coronavirus (BatCoV RaTG13) with a 96% genomic nucleotide sequence identity. The close phylogenetic relationship to Bat RaTG13 provides evidence for a bat origin of SARS-CoV-2. Direct transmission of the virus from bats to humans is unlikely due to the lack of direct contact between bats and humans (in Wuhan, China). There are probably intermediate hosts transmitting SARS-CoV-2 to humans. Combined phylogenetic analysis and critical site marking is used to predict the utilizing capability of ACE2 from different animal species by SARS-CoV-2. It is confirmed that pangolin (Manis javanica), cat (Felis catus), cow (Bos taurus), buffalo (Bubalus bubalis), goat (Capra hircus), sheep (Ovis aries) and pigeon (Columba livia) ACE2 might be utilized by SARS-CoV-2, indicating potential interspecies transmission of the virus from bats to these animals and among these animals Bos taurus
3.4.17.23 physiological function angiotensin converting enzyme 2 (ACE2) is the receptor of SARS-CoV-2, but only ACE2 of certain species can be utilized by SARS-CoV-2. SARS-CoV-2 tends to utilize ACE2 of various mammals, except murines, and some birds, such as pigeon. This prediction may help to screen the intermediate hosts of SARS-CoV-2. SARS-CoV-2 has a high genetic relationship with a bat coronavirus (BatCoV RaTG13) with a 96% genomic nucleotide sequence identity. The close phylogenetic relationship to Bat RaTG13 provides evidence for a bat origin of SARS-CoV-2. Direct transmission of the virus from bats to humans is unlikely due to the lack of direct contact between bats and humans (in Wuhan, China). There are probably intermediate hosts transmitting SARS-CoV-2 to humans. Combined phylogenetic analysis and critical site marking is used to predict the utilizing capability of ACE2 from different animal species by SARS-CoV-2. It is confirmed that pangolin (Manis javanica), cat (Felis catus), cow (Bos taurus), buffalo (Bubalus bubalis), goat (Capra hircus), sheep (Ovis aries) and pigeon (Columba livia) ACE2 might be utilized by SARS-CoV-2, indicating potential interspecies transmission of the virus from bats to these animals and among these animals Bubalus bubalis
3.4.17.23 physiological function angiotensin converting enzyme 2 (ACE2) is the receptor of SARS-CoV-2, but only ACE2 of certain species can be utilized by SARS-CoV-2. SARS-CoV-2 tends to utilize ACE2 of various mammals, except murines, and some birds, such as pigeon. This prediction may help to screen the intermediate hosts of SARS-CoV-2. SARS-CoV-2 has a high genetic relationship with a bat coronavirus (BatCoV RaTG13) with a 96% genomic nucleotide sequence identity. The close phylogenetic relationship to Bat RaTG13 provides evidence for a bat origin of SARS-CoV-2. Direct transmission of the virus from bats to humans is unlikely due to the lack of direct contact between bats and humans (in Wuhan, China). There are probably intermediate hosts transmitting SARS-CoV-2 to humans. Combined phylogenetic analysis and critical site marking is used to predict the utilizing capability of ACE2 from different animal species by SARS-CoV-2. It is confirmed that pangolin (Manis javanica), cat (Felis catus), cow (Bos taurus), buffalo (Bubalus bubalis), goat (Capra hircus), sheep (Ovis aries) and pigeon (Columba livia) ACE2 might be utilized by SARS-CoV-2, indicating potential interspecies transmission of the virus from bats to these animals and among these animals Capra hircus
3.4.17.23 physiological function angiotensin converting enzyme 2 (ACE2) is the receptor of SARS-CoV-2, but only ACE2 of certain species can be utilized by SARS-CoV-2. SARS-CoV-2 tends to utilize ACE2 of various mammals, except murines, and some birds, such as pigeon. This prediction may help to screen the intermediate hosts of SARS-CoV-2. SARS-CoV-2 has a high genetic relationship with a bat coronavirus (BatCoV RaTG13) with a 96% genomic nucleotide sequence identity. The close phylogenetic relationship to Bat RaTG13 provides evidence for a bat origin of SARS-CoV-2. Direct transmission of the virus from bats to humans is unlikely due to the lack of direct contact between bats and humans (in Wuhan, China). There are probably intermediate hosts transmitting SARS-CoV-2 to humans. Combined phylogenetic analysis and critical site marking is used to predict the utilizing capability of ACE2 from different animal species by SARS-CoV-2. It is confirmed that pangolin (Manis javanica), cat (Felis catus), cow (Bos taurus), buffalo (Bubalus bubalis), goat (Capra hircus), sheep (Ovis aries) and pigeon (Columba livia) ACE2 might be utilized by SARS-CoV-2, indicating potential interspecies transmission of the virus from bats to these animals and among these animals Ovis aries
3.4.17.23 physiological function angiotensin converting enzyme 2 (ACE2) is the receptor of SARS-CoV-2, but only ACE2 of certain species can be utilized by SARS-CoV-2. SARS-CoV-2 tends to utilize ACE2 of various mammals, except murines, and some birds, such as pigeon. This prediction may help to screen the intermediate hosts of SARS-CoV-2. SARS-CoV-2 has a high genetic relationship with a bat coronavirus (BatCoV RaTG13) with a 96% genomic nucleotide sequence identity. The close phylogenetic relationship to Bat RaTG13 provides evidence for a bat origin of SARS-CoV-2. Direct transmission of the virus from bats to humans is unlikely due to the lack of direct contact between bats and humans (in Wuhan, China). There are probably intermediate hosts transmitting SARS-CoV-2 to humans. Combined phylogenetic analysis and critical site marking is used to predict the utilizing capability of ACE2 from different animal species by SARS-CoV-2. It is confirmed that pangolin (Manis javanica), cat (Felis catus), cow (Bos taurus), buffalo (Bubalus bubalis), goat (Capra hircus), sheep (Ovis aries) and pigeon (Columba livia) ACE2 might be utilized by SARS-CoV-2, indicating potential interspecies transmission of the virus from bats to these animals and among these animals Columba livia